Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ya-Qiu Sun, Wen Dong,
Guang-Ming Yang and Dai-Zheng Liao*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: coord@nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.054$
$w R$ factor $=0.118$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

\{2,2'-Bis[(3-aminopropyl)iminomethyl]oxalanilide\}cobalt(III) perchlorate

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{2}\right)\right] \mathrm{ClO}_{4}$, was prepared from diformyloxanilide, cobalt(II) perchlorate and 1,3propanediamine. The crystal structure contains a complex cobalt(III) cation and a perchlorate anion. Cobalt is coordinated by six N atoms from the anilide ligand in chelating mode, forming a distorted octahedral geometry. Inter-cation hydrogen bonds are present in the crystal structure.

Comment

The coordination properties N, N-bis-oxamides have been thoroughly investigated, both in aqueous solution and in the solid state (Ruiz et al., 1999). In the presence of metal ions and when the oxamide has another coordinating group at a position which can form five- or six-membered chelate rings, the amide group deprotonates and coordinates simultaneously in low pH range. Recently, an increasing interest has been shown in the design of mononuclear oxamidate-bridged complexes. However, most of the studies were focused on the mononuclear oxamidate-bridged copper complex (Tang et al., 2002); by comparison, the oxamidate-bridged cobalt(III) complex has hardly been investigated.

The crystal structure of the title complex, (I), is composed of a $\left\{2,2^{\prime}\right.$-bis[(3-aminopropyl)iminomethyl]oxalanilide $\}$ cobalt(III) cation (Fig. 1) and a perchlorate anion. The ligand coordinates to the cobalt(III) ion in chelating mode, leading to a distorted octahedron. The $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angles involving adjacent vertices of the octahedron are in the range 82.9 (1)$96.5(1)^{\circ}$, while the range of those involving opposite vertices is $173.5(1)-178.0(1)^{\circ}$, and $\mathrm{Co}-\mathrm{N}$ bonds lengths are 1.908 (3)-2.016 (3) A. The packing diagram (Fig. 2) shows the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between neighboring cations, giving chains.

View of the title compound, with displacement ellipsoids shown at the 50% probability level.

Experimental

The title compound, (I), was prepared by refluxing and stirring diformyloxanilide $(2.49 \mathrm{~g}, 0.01 \mathrm{~mol}), 1,3$-propanediamine $(1.6 \mathrm{ml}$, 0.02 mol) and cobalt(II) perchlorate for 3.5 h in 50 ml of MeOH in the presence of four drops of 2 M NaOH . After the mixture was cooled and filtered, the resulting precipitate was washed with water, methanol and diethyl ether successively, and dried under vacuum. The resulting deep-red filtrate, kept at room temperature for several days, produced red prismatic crystals suitable for X-ray analysis.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{2}\right)\right] \mathrm{ClO}_{4}$
$M_{r}=564.87$
Monoclinic, $P 2_{1} / c$
$a=9.728$ (3) \AA
$b=17.232(5) \AA$
$c=14.953$ (5) \AA
$\beta=108.076$ (6) ${ }^{\circ}$
$V=2382.8(13) \AA^{3}$
$Z=4$
$D_{x}=1.575 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 897
\quad reflections
$\theta=2.2-23.3^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, red
$0.32 \times 0.24 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.743, T_{\text {max }}=0.838$
11184 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.118$
$S=0.99$
4873 reflections
325 parameters
H -atom parameters constrained

4873 independent reflections 2884 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-12 \rightarrow 10$
$k=-21 \rightarrow 15$
$l=-6 \rightarrow 18$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0383 P)^{2}\right.} \\
&+1.7668 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
View of the hydrogen-bond interactions (shown as dashed lines).

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{i}}$	0.90	2.17	$3.057(5)$	168
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{i}}$	0.90	2.37	$2.876(4)$	115
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots 1^{\mathrm{i}}$	0.90	2.05	$2.929(4)$	166
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{O}^{\mathrm{i}}$	0.90	2.52	$2.876(4)$	104
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.45	$3.294(8)$	145
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O}^{\text {iii }}$	0.93	2.55	$3.182(8)$	126
$\mathrm{C}^{\text {in }}-\mathrm{H} 16 A \cdots 1^{\text {iv }}$	0.93	2.43	$3.314(5)$	158

Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $1-x, 1-y, 1-z$; (iii) $1+x, y, z$; (iv) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$.

H atoms were positioned geometrically $(\mathrm{N}-\mathrm{H}=0.90 \AA, \mathrm{C}-\mathrm{H}=$ $0.93-0.97 \AA$) and refined using a riding model, with $U_{\text {iso }}=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL and WinGX (Farrugia, 1999).

References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ruiz, R., Faus, J., Loret, F., Julve, M. \& Journaux, Y. (1999). Coord. Chem. Rev. 193, 1069-1117.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tang, J. K., Wang, Q. L., Gao, E. Q., Chen, J. T., Liao, D. Z. \& Jiang, Z. H. (2002) Helv. Chim. Acta, 85, 175-182.

