metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ya-Qiu Sun, Wen Dong, Guang-Ming Yang and Dai-Zheng Liao*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: coord@nankai.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.054 wR factor = 0.118 Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

{2,2'-Bis[(3-aminopropyl)iminomethyl]oxalanilide}cobalt(III) perchlorate

The title compound, $[Co(C_{22}H_{26}N_6O_2)]ClO_4$, was prepared from diformyloxanilide, cobalt(II) perchlorate and 1,3propanediamine. The crystal structure contains a complex cobalt(III) cation and a perchlorate anion. Cobalt is coordinated by six N atoms from the anilide ligand in chelating mode, forming a distorted octahedral geometry. Inter-cation hydrogen bonds are present in the crystal structure. Received 16 March 2004 Accepted 23 April 2004 Online 8 May 2004

Comment

The coordination properties *N*,*N*-bis-oxamides have been thoroughly investigated, both in aqueous solution and in the solid state (Ruiz *et al.*, 1999). In the presence of metal ions and when the oxamide has another coordinating group at a position which can form five- or six-membered chelate rings, the amide group deprotonates and coordinates simultaneously in low pH range. Recently, an increasing interest has been shown in the design of mononuclear oxamidate-bridged complexes. However, most of the studies were focused on the mononuclear oxamidate-bridged copper complex (Tang *et al.*, 2002); by comparison, the oxamidate-bridged cobalt(III) complex has hardly been investigated.

The crystal structure of the title complex, (I), is composed of a $\{2,2'-bis[(3-aminopropyl)iminomethyl]oxalanilide\}$ cobalt(III) cation (Fig. 1) and a perchlorate anion. The ligandcoordinates to the cobalt(III) ion in chelating mode, leading toa distorted octahedron. The N-Co-N angles involvingadjacent vertices of the octahedron are in the range 82.9 (1)-96.5 (1)°, while the range of those involving opposite verticesis 173.5 (1)-178.0 (1)°, and Co-N bonds lengths are1.908 (3)-2.016 (3) Å. The packing diagram (Fig. 2) shows theN-H···O hydrogen bonds between neighboring cations,giving chains.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

50% probability level.

The title compound, (I), was prepared by refluxing and stirring diformyloxanilide (2.49 g, 0.01 mol), 1,3-propanediamine (1.6 ml, 0.02 mol) and cobalt(II) perchlorate for 3.5 h in 50 ml of MeOH in the presence of four drops of 2 M NaOH. After the mixture was cooled and filtered, the resulting precipitate was washed with water, methanol and diethyl ether successively, and dried under vacuum. The resulting deep-red filtrate, kept at room temperature for several days, produced red prismatic crystals suitable for X-ray analysis.

Crystal data

$[Co(C_{22}H_{26}N_6O_2)]ClO_4$	$D_x = 1.575 \text{ Mg m}^{-3}$
$M_r = 564.87$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 8
$a = 9.728 (3) \text{ Å}^{-1}$	reflections
b = 17.232(5) Å	$\theta = 2.2 - 23.3^{\circ}$
c = 14.953(5) Å	$\mu = 0.89 \text{ mm}^{-1}$
$\beta = 108.076 \ (6)^{\circ}$	T = 293 (2) K
$V = 2382.8 (13) \text{ Å}^3$	Prism, red
Z = 4	$0.32 \times 0.24 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART CCD area_detector	4873 independent refle

diffractomet	ter
φ and ω scans	
Absorption co	rrection: multi-scan
(SADABS;	Sheldrick, 1996)
$T_{\rm min} = 0.743$	$T_{\rm max} = 0.838$
11 184 measur	ed reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.054$
$wR(F^2) = 0.118$
S = 0.99
4873 reflections
325 parameters
H-atom parameters constrained

endent reflections 2884 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.064$ $\theta_{\rm max} = 26.4^{\circ}$ $h = -12 \rightarrow 10$ $k = -21 \rightarrow 15$ $l=-6\rightarrow 18$

897

 $w = 1/[\sigma^2(F_o^2) + (0.0383P)^2]$ + 1.7668P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

View of the hydrogen-bond interactions (shown as dashed lines).

Table 1	
Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1C\cdotsO1^{i}$	0.90	2.17	3.057 (5)	168
$N1 - H1C \cdot \cdot \cdot O2^{i}$	0.90	2.37	2.876 (4)	115
$N6-H6B\cdotsO1^{i}$	0.90	2.05	2.929 (4)	166
$N1 - H1D \cdot \cdot \cdot O2^{i}$	0.90	2.52	2.876 (4)	104
$C1-H1B\cdots O6^{ii}$	0.97	2.45	3.294 (8)	145
$C14-H14A\cdots O4^{iii}$	0.93	2.55	3.182 (8)	126
$C16-H16A\cdots O1^{iv}$	0.93	2.43	3.314 (5)	158

Symmetry codes: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 + x, y, z; (iv) $1 + x, \frac{1}{2} - y, \frac{1}{2} + z.$

H atoms were positioned geometrically (N-H = 0.90 Å, C-H = 0.93–0.97 Å) and refined using a riding model, with $U_{\rm iso}$ = $1.2U_{eq}(C,N).$

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL and WinGX (Farrugia, 1999).

References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Ruiz, R., Faus, J., Loret, F., Julve, M. & Journaux, Y. (1999). Coord. Chem. Rev. 193, 1069-1117.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tang, J. K., Wang, Q. L., Gao, E. Q., Chen, J. T., Liao, D. Z. & Jiang, Z. H. (2002) Helv. Chim. Acta, 85, 175-182.